research
oaioai:doaj.org/article:578edbe3be0f4d9aac8f0754b3daeb0f

Effect of unsteady wind on drifting snow: first investigations

Abstract

Wind is not always a steady flow. It can oscillate, producing blasts. However, most of the current numerical models of drifting snow are constrained by one major assumption: forcing winds are steady and uniform. Moreover, very few studies have been done to verify this hypothesis, because of the lack of available instrumentation and measurement difficulties. Therefore, too little is known about the possible role of wind gust in drifting snow. In order to better understand the effect of unsteady winds, we have performed both experiments at the climatic wind tunnel at the CSTB (Centre Scientifique et Technique des Bâtiments) in Nantes, France, and in situ experiments on our experimental high-altitude site, at the Lac Blanc Pass. These experiments were carried out collaboratively with Cemagref (France), Météo-France, and the IFENA (Switzerland). Through the wind tunnel experiments, we found that drifting snow is in a state of permanent disequilibrium in the presence of fluctuating airflows. In addition, the in situ experiments show that the largest drifting snow episodes appear during periods of roughly constant strong wind, whereas a short but strong blast does not produce significant drifting snow.  Key words. Drifting snow, blowing snow, gust, blast, acoustic senso

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

Provided a free PDF
oaioai:doaj.org/article:578edbe3be0f4d9aac8f0754b3daeb0fLast time updated on 12/18/2014View original full text link

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.