Higher Order Compact Finite Difference Schemes for Unsteady Boundary Layer Flow Problems

Abstract

We investigate the applicability of the compact finite difference relaxation method (CFDRM) in solving unsteady boundary layer flow problems modelled by nonlinear partial differential equations. The CFDRM utilizes the Gauss-Seidel approach of decoupling algebraic equations to linearize the governing equations and solve the resulting system of ordinary differential equations using compact finite difference schemes. The CFDRM has only been used to solve ordinary differential equations modelling boundary layer problems. This work extends its applications to nonlinear partial differential equations modelling unsteady boundary layer flows. The CFDRM is validated on two examples and the results are compared to results of the Keller-box method

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 17/12/2014

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.