Direct optical observation of walls and disclination effects in active photonic devices

Abstract

Liquid crystal tunable Bragg Gratings defined in planar substrates via a laser patterning technique exhibit complex wavelength tuning. This tuning displays threshold points and hysteresis. These tuning features are shown to be a manifestation of physical processes occurring in the confined geometry of our tunable devices. Such physical processes include the formation and removal of line disclinations and an associated wall. We discuss the effect of walls in the liquid crystal with regards to voltage tuning characteristics and whether they may allow faster wavelength tuning

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.