COMPUTATIONAL ANATOMY: AN EMERGING DISCIPLINE

Abstract

This paper studies mathematical methods in the emerging new discipline of Computational Anatomy. Herein we formalize the Brown/Washington University model of anatomyfollowing the global pattern theory introduced in [1, 2], in which anatomies are represented as deformable templates, collections of 0 � 1 � 2 � 3;dimensional manifolds. Typical structure is carried by the template with the variabilities accommodated via the application of random transformations to the background manifolds. The anatomical model is a quadruple ( � H � I � P), the background space = [ M of 0 � 1 � 2 � 3;dimensional manifolds, the set of di eomorphic transformations on the background space H: $ , the space of idealized medical imagery I, and P the family of probability measures on H. The group of di eomorphic transformations H is chosen to be rich enough so that a large family of shapes may be generated with the topologies of the template maintained. For normal anatomy one deformable template is studied, with ( � H � I) corresponding to a homogeneous space [3], in that it can be completely generated from one of its elements, I = HItemp�Itemp 2I. For disease, a family of templates [ Itemp are introduced of perhaps varying dimensional transformation classes. The complete anatomy is is a collection of homogeneous spaces Itotal = [ (I � H). There are three principal components to computational anatomy studied herein

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.