On the Motion and Appearance of Specularities in Image Sequences

Abstract

Real scenes are full of specularities (highlights and reflections), and yet most vision algorithms ignore them. In order to capture the appearance of realistic scenes, we need to model specularities as separate layers. In this paper, we study the behavior of specularities in static scenes as the camera moves, and describe their dependence on varying surface geometry, orientation, and scene point and camera locations. For a rectilinear camera motion with constant velocity, we study how the specular motion deviates from a straight trajectory (disparity deviation) and how much it violates the epipolar constraint (epipolar deviation). Surprisingly, for surfaces that are convex or not highly undulating, these deviations are usually quite small. We also study the appearance of specularities, i.e., how they interact with the body reflection, and with the usual occlusion ordering constraints applicable to di#use opaque layers. We present a taxonomy of specularities based on their photometric properties as a guide for designing separation techniques. Finally, we propose a technique to extract specularities as a separate layer, and demonstrate it using an image sequence of a complex scene

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.