Techniques to reduce the soft error rate of a high-performance microprocessor
- Publication date
- 2004
- Publisher
Abstract
Transient faults due to neutron and alpha particle strikes pose a significant obstacle to increasing processor transistor counts in future technologies. Although fault rates of individual transistors may not rise significantly, incorporating more transistors into a device makes that device more likely to encounter a fault. Hence, maintaining processor error rates at acceptable levels will require increasing design effort. This paper proposes two simple approaches to reduce error rates and evaluates their application to a microprocessor instruction queue. The first technique reduces the time instructions sit in vulnerable storage structures by selectively squashing instructions when long delays are encountered. A fault is less likely to cause an error if the structure it affects does not contain valid instructions. We introduce a new metric, MITF (Mean Instructions To Failure)