Manifold T-spline

Abstract

Abstract. This paper develops the manifold T-splines, which naturally extend the concept and the currently available algorithms/techniques of the popular planar tensor-product NURBS and T-splines to arbitrary manifold domain of any topological type. The key idea is the global conformal parameterization that intuitively induces a tensor-product structure with a finite number of zero points, and hence offering a natural mechanism for generalizing the tensor-product splines throughout the entire manifold. In our shape modeling framework, the manifold T-splines are globally well-defined except at a finite number of extraordinary points, without the need of any tedious trimming and patching work. We present an efficient algorithm to convert triangular meshes to manifold T-splines. Because of the natural, built-in hierarchy of T-splines, we can easily reconstruct a manifold T-spline surface of high-quality with LOD control and hierarchical structure.

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.