Interval and Dynamic Time Warping-based Decision Trees

Abstract

This work presents decision trees adequate for the classification of series data. There are several methods for this task, but most of them focus on accuracy. One of the requirements of data mining is to produce comprehensible models. Decision trees are one of the most comprehensible classifiers. The use of these methods directly on this kind of data is, generally, not adequate, because complex and inaccurate classifiers are obtained. Hence, instead of using the raw features, new ones are constructed

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.