Multiclass Alternating Decision Trees

Abstract

The alternating decision tree (ADTree) is a successful classification technique that combines decision trees with the predictive accuracy of boosting into a set of interpretable classification rules. The original formulation of the tree induction algorithm restricted attention to binary classification problems. This paper empirically evaluates several wrapper methods for extending the algorithm to the multiclass case by splitting the problem into several two-class problems. Seeking a more natural solution we then adapt the multiclass LogitBoost and AdaBoost.MH procedures to induce alternating decision trees directly. Experimenta

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.