Converting Thread-Level Parallelism to Instruction-Level Parallelism via Simultaneous Multithreading

Abstract

To achieve high performance, contemporary computer systems rely on two forms of parallelism: instruction-level parallelism (ILP) and thread-level parallelism (TLP). Wide-issue superscalar processors exploit ILP by executing multiple instructions from a single program in a single cycle. Multiprocessors (MP) exploit TLP by executing different threads in parallel on different processors. Unfortunately, both parallel-processing styles statically partition processor resources, thus preventing them from adapting to dynamically-changing levels of ILP and TLP in a program. With insufficient TLP, processors in an MP will be idle; with insufficient ILP, multiple-issue hardware on a superscalar is wasted. This paper explores parallel processing on an alternative architecture, simultaneous multithreading (SMT), which allows multip..

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.