A Computational Algorithm for Minimizing Total Variation in Image Restoration

Abstract

A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al [1], [2], [3]. For discrete images, the proposed algorithm minimizes a piecewise linear l 1 function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l 1 objective function for the total variation measurement leads to a simplier computational algorithm. Both the steepest descent and an affine scaling Newton method are considered for solving this constrained piecewise linear l 1 minimization problem. The resulting algorithm, when viewed as an image restoratio..

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.