Location of Repository

Selecting and fitting graphical chain models to longitudinal data

By Riccardo Borgoni, Ann M. Berrington and Peter W.F. Smith

Abstract

The aim of this paper is to demonstrate how graphical chain models can be used as effective tools in life course research focusing in particular on models for longitudinal prospective data. The substantive research question focuses on whether young motherhood is a pathway through which socio-economic disadvantage in childhood is related to poor self-reported health in adulthood among the 1970 British birth cohort. By breaking down large multivariate systems into simpler more tractable subcomponents and analysing them via local regressions, graphical models helps the understanding of complicated life course processes, show the intermediate relationships between predictors, and aid the understanding of the mechanisms through which potential confounding and mediating factors affect the outcome of interest

Topics: HA
Year: 2012
OAI identifier: oai:eprints.soton.ac.uk:155247
Provided by: e-Prints Soton

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.