Location of Repository

Cooperative relay networks using fountain codes

By Andreas Molisch, Neelesh Mehta, Jonathan Yedidia, Jin Zhang, Andreas F. Molisch, Neelesh B. Mehta, Jonathan S. Yedidia and Jinyun Zhang


We investigate a cooperative communications scheme with N parallel relays, where both the transmissions from the source to the relays and from the relays to the destination use fountain codes. Receiver for codes can accumulate mutual information, while traditional energy collection methods, such as repetition or cooperative space-time codes, only accumulate energy. As a consequence, using fountain codes can reduce the total energy required for transmitting data from the source to the destination. We first analyze the scenario where the source stops transmitting and the relay nodes start transmitting after L relay nodes have successfully decoded the source data. We optimize L, and also give closed-form equations for the energy savings that can be achieved by the use of mutual-information-collection at the receiver instead of the traditional energy-collection methods. We then analyze an alternate scenario where each relay node starts its transmission to the destination as soon as it has decoded the source data, and helps the other relay nodes that are still in reception mode. Doing so further reduces the total transmission time and energy consumption

Year: 2006
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.merl.com/publicatio... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.