Skip to main content
Article thumbnail
Location of Repository

By 

Abstract

Mean and covariance matrix adaptive estimation for a weakly stationary process. Application in stochastic optimization Vincent Guigues Summary: We introduce an adaptive algorithm to estimate the uncertain parameter of a stochastic optimization problem. The procedure estimates the one-step-ahead means, variances and covariances of a random process in a distribution-free and multidimensional framework when these means, variances and covariances are slowly varying on a given past interval. The quality of the approximate problem obtained when employing our estimation of the uncertain parameter is controlled in function of the number of components of the process and of the length of the largest past interval where the means, variances and covariances slowly vary. The procedure is finally applied to a portfolio selection model.

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.416.4359
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.optimization-online... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.