Location of Repository

EFFECTIVE CROWD CONTROL THROUGH ADAPTIVE EVOLUTION OF AGENT-BASED SIMULATION MODELS

By C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, A. M. Uhrmacher, Nan Hu, James Decraene and Wentong Cai

Abstract

We report an approach to achieve effective crowd control strategies through adaptively evolving an agentbased model of Crowd Simulation for Military Operations (COSMOS). COSMOS is a complex system simulation platform developed to address challenges posed by the Military Operations in Urban Terrains (MOUT). Modeling and simulating soldiers ’ tactical behaviors in MOUT scenarios is challenging due to the complex and emerging behaviors of crowds and large parameter space of the models. Consequently, it is difficult to search for effective crowd control strategies through tuning the model parameters manually. We employ an adaptive evolutionary computation approach, using the Complex Adaptive Systems Evolver (CASE), to address this challenge. Specifically, we conduct experiments using a “building-protection” scenario, where the operation plans of soldier agents are adaptively evolved to best control a crowd. The results suggest this approach using agent-based simulation and evolutionary computation techniques is promising for the study of complex military operations.

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.416.4233
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.informs-sim.org/wsc... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.