Skip to main content
Article thumbnail
Location of Repository

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Parameter Learning for Latent Network Diffusion

By Xiaojian Wu, Akshat Kumar, Daniel Sheldon and Shlomo Zilberstein

Abstract

Diffusion processes in networks are increasingly used to model dynamic phenomena such as the spread of information, wildlife, or social influence. Our work addresses the problem of learning the underlying parameters that govern such a diffusion process by observing the time at which nodes become active. A key advantage of our approach is that, unlike previous work, it can tolerate missing observations for some nodes in the diffusion process. Having incomplete observations is characteristic of offline networks used to model the spread of wildlife. We develop an EM algorithm to address parameter learning in such settings. Since both the E and M steps are computationally challenging, we employ a number of optimization methods such as nonlinear and difference-of-convex programming to address these challenges. Evaluation of the approach on the Red-cockaded Woodpecker conservation problem shows that it is highly robust and accurately learns parameters in various settings, even with more than 80 % missing data.

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.415.9623
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://ijcai.org/papers13/Pape... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.