Location of Repository

Asymmetric Correlation: a Noise Robust Similarity Measure for Template Matching

By Elhanan Elboher and Michael Werman


Abstract—We present an efficient and noise robust template matching method based on asymmetric correlation (ASC). The ASC similarity function is invariant to affine illumination changes and robust to extreme noise. It correlates the given nonnormalized template with a normalized version of each image window in the frequency domain. We show that this asymmetric normalization is more robust to noise than other cross correlation variants such as the correlation coefficient. Direct computation of ASC is very slow, as a DFT needs to be calculated for each image window independently. To make the template matching efficient, we developed a much faster algorithm which carries out a prediction step in linear time and then computes DFTs for only a few promising candidate windows. We extend the proposed template matching scheme to deal with partial occlusion and spatially varying light change. Experimental results demonstrate the robustness of the proposed ASC similarity measure compared to state of the art template matching methods. I

Year: 2014
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.huji.ac.il/~elha... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.