Skip to main content
Article thumbnail
Location of Repository

Work in Progress: On The Scalability of Storage Sub-System Back-end Network

By Yan Li, Tim Courtney, N. Ibbett and Nigel Topham


The aim of this on-going work is to study the scalability of the back-end network of storage subsystems in terms of the number of disks that can be linked to the network. It is well known that without considering the limitation of back-end network, increasing the number of disks in a RAID based storage system will increase the parallelism, and so can lead to a higher performance. Moreover, to save money on the back-end network, it is common practice to scale the number of disks rather than the number of independent access pathways. However, in a real system there is a limitation on the scale of storage sub-systems (controller cache size and number of disks that can be included in one system) due to the limitation of interconnection network. This is because the back-end interconnection networks are shared by all the disks and the RAID controllers in a storage sub-system. The more disks are added to the system, the higher the contention for the shared media. When the number of disks and cache size in a RAID system reaches a certain threshold, there will be no further gain in performance by adding more disk or cache due to the saturation of the back-end network. Therefore, in order to design a scalable storage sub-system it is critical to study the saturation characteristics and scalability of the back-end network. Previous work has focussed on sequential accesses only when working out when the back-end network becomes saturated, this does not represent a ’normal ’ workload. This work uses a workload based on th

Year: 2014
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.