Skip to main content
Article thumbnail
Location of Repository

Bängtsson E. Preconditioning of nonsymmetric saddle point systems as arising in modelling of visco-elastic problems

By Maya Neytcheva and Erik Bängtsson


Abstract. In this paper we consider numerical simulations of the so-called glacial rebound phenomenon and the use of efficient preconditioned iterative solution methods in that context. The problem originates from modeling the response of the solid earth to large scale glacial advance and recession which may have provoked very large earthquakes in Northern Scandinavia. The need for such numerical simulations is due to ongoing investigations on safety assessment of radioactive waste repositories. The continuous setting of the problem is to solve an integrodifferential equation in a large time-space domain. This problem is then discretized using a finite element method in space and a suitable discretization in time, and gives rise to the solution of a large number of linear systems with nonsymmetric matrices of saddle point form. We outline the properties of the corresponding linear systems of equations, discuss possible preconditioning strategies, and present some numerical experiments

Topics: Key words. viscoelasticity, in)compressibility, nonsymmetric saddle-point system, preconditioning, Schur
Year: 2014
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.