Probabilistic Life Assessment of Gas Turbine Blades

Abstract

This paper addresses the problem of analyzing measurement data to estimate the variations in turbine blade life in the presence of manufacturing variability. A methodologythat employs existing denoising techniques, namely, Principal Component Analysis and Fast Fourier Transform analysis, is proposed for filtering measurement error from the measured data set. An approach for dimensionality reduction is employed that uses prior knowledge on the measurement error obtained from analyzing repeated measurements. The proposed methodology also helps in capturing the effects of manufacturing drift with time and the blade to blade manufacturing error. The filtered data is then used for generating three-dimensional representations of probable manufactured blade shapesfrom the limited number of available measurements. This is accomplished by using a Free-Form Deformation based approach for deforming a nominal mesh to the desiredshapes. Estimations of life on the probable turbine blade shapes manufactured over a span of 1 year indicate a reduction of around 1.7% in the mean life relative to thenominal life, with a maximum relative reduction of around 3.7%, due to the effects of manufacturing variabilit

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.