Skip to main content
Article thumbnail
Location of Repository

Probabilistic Life Assessment of Gas Turbine Blades

By Nikita Thakur, A.J. Keane, P.B. Nair and A. Rao


This paper addresses the problem of analyzing measurement data to estimate the variations in turbine blade life in the presence of manufacturing variability. A methodologythat employs existing denoising techniques, namely, Principal Component Analysis and Fast Fourier Transform analysis, is proposed for filtering measurement error from the measured data set. An approach for dimensionality reduction is employed that uses prior knowledge on the measurement error obtained from analyzing repeated measurements. The proposed methodology also helps in capturing the effects of manufacturing drift with time and the blade to blade manufacturing error. The filtered data is then used for generating three-dimensional representations of probable manufactured blade shapesfrom the limited number of available measurements. This is accomplished by using a Free-Form Deformation based approach for deforming a nominal mesh to the desiredshapes. Estimations of life on the probable turbine blade shapes manufactured over a span of 1 year indicate a reduction of around 1.7% in the mean life relative to thenominal life, with a maximum relative reduction of around 3.7%, due to the effects of manufacturing variabilit

Topics: TL
Year: 2010
OAI identifier:
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.