Skip to main content
Article thumbnail
Location of Repository

Approximation of Geometric Dispersion Problems

By Christoph Baur and Sándor P. Fekete

Abstract

We consider problems of distributing a number of points within a polygonal region P , such that the points are "far away" from each other. Problems of this type have been considered before for the case where the possible locations form a discrete set. Dispersion problems are closely related to packing problems. While Hochbaum and Maass (1985) have given a polynomial time approximation scheme for packing, we show that geometric dispersion problems cannot be approximated arbitrarily well in polynomial time, unless P=NP. A special case of this observation solves an open problem by Rosenkrantz, Tayi, and Ravi. We give a 2/3 approximation algorithm for one version of the geometric dispersion problem. This algorithm is strongly polynomial in the size of the input, i. e., its running time does not depend on the area of P . We also discuss extensions and open problems

Year: 1999
OAI identifier: oai:CiteSeerX.psu:10.1.1.36.1536
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • ftp://ftp.zpr.uni-koeln.de/pub... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.