Skip to main content
Article thumbnail
Location of Repository

SOFTWARE PROCESS IMPROVEMENT AND PRACTICE Softw. Process Improve. Pract. (2009) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/spip.414 Accurate Estimates Without Local Data?

By Tim Menzies, Steve Williams, Oussama Elrawas, Daniel Baker, Barry Boehm, Jairus Hihn, Karen Lum and Ray Madachy

Abstract

Models of software projects input project details and output predictions via their internal tunings. The output predictions, therefore, are affected by variance in the project details P and variance in the internal tunings T. Local data is often used to constrain the internal tunings (reducing T). While constraining internal tunings with local data is always the preferred option, there exist some models for which constraining tuning is optional. We show empirically that, for the USC COCOMO family of models, the effects of P dominate the effects of T i.e. the output variance of these models can be controlled without using local data to constrain the tuning variance (in ten case studies, we show that the estimates generated by only constraining P are very similar to those produced by constraining T with historical data). We conclude that, if possible, models should be designed such that the effects of the project options dominate the effects of the tuning options. Such models can be used for the purposes of decision making without elaborate, tedious, and time-consuming data collection from the loca

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.353.628
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://menzies.us/pdf/09nodata... (external link)
  • www.interscience.wiley.com) (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.