Skip to main content
Article thumbnail
Location of Repository

Clustering: Science or art

By Ulrike Von Luxburg, Robert C. Williamson and Isabelle Guyon

Abstract

We examine whether the quality of different clustering algorithms can be compared by a general, scientifically sound procedure which is independent of particular clustering algorithms. We argue that the major obstacle is the difficulty in evaluating a clustering algorithm without taking into account the context: why does the user cluster his data in the first place, and what does he want to do with the clustering afterwards? We argue that clustering should not be treated as an application-independent mathematical problem, but should always be studied in the context of its end-use. Different techniques to evaluate clustering algorithms have to be developed for different uses of clustering. To simplify this procedure we argue that it will be useful to build a “taxonomy of clustering problems ” to identify clustering applications which can be treated in a unified way and that such an effort will be more fruitful than attempting the impossible — developing “optimal ” domain-independent clustering algorithms or even classifying clustering algorithms in terms of how they work.

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.353.5654
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://users.cecs.anu.edu.au/~... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.