Skip to main content
Article thumbnail
Location of Repository

Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity

By José Antonio Gálvez, Antonio Martínez and Francisco Milán

Abstract

Abstract. In this paper we study a large class of Weingarten surfaces which includes the constant mean curvature one surfaces and flat surfaces in the hyperbolic 3-space. We show that these surfaces can be parametrized by holomorphic data like minimal surfaces in the Euclidean 3-space and we use it to study their completeness. We also establish some existence and uniqueness theorems by studing the Plateau problem at infinity: when is a given curve on the ideal boundary the asymptotic boundary of a complete surface in our family? and, how many embedded solutions are there? 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.353.2153
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.ams.org/journals/tr... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.