Skip to main content
Article thumbnail
Location of Repository

Crowdsourcing for word recognition in noise

By Martin Cooke, Jon Barker, Maria Luisa, Garcia Lecumberri and Krzysztof Wasilewski


Access to large samples of listeners is an appealing prospect for speech perception researchers, but lack of control over key factors such as listeners ’ linguistic backgrounds and quality of stimulus delivery is a formidable barrier to the application of crowdsourcing. We describe the outcome of a web-based listening experiment designed to discover consistent confusions amongst words presented in noise, alongside an identical task carried out using traditional laboratory methods. Web listeners were graded according based on information they provided as well as via their responses to tokens recognised robustly by a majority of participants. While overall word identification scores even for the best-performing web subset were well below those obtained in the laboratory, word confusions with high levels of cross-listener agreement were obtained nevertheless, suggesting that focused application of crowdsourcing in speech perception can provide useful data for scientific analysis. Index Terms: speech perception, noise, web experiment 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.