Skip to main content
Article thumbnail
Location of Repository

Probabilistic structured predictors

By Shankar Vembu, Thomas Gärtner, Mario Boley and Schloß Birlinghoven


We consider MAP estimators for structured prediction with exponential family models. In particular, we concentrate on the case that efficient algorithms for uniform sampling from the output space exist. We show that under this assumption (i) exact computation of the partition function remains a hard problem, and (ii) the partition function and the gradient of the log partition function can be approximated efficiently. Our main result is an approximation scheme for the partition function based on Markov Chain Monte Carlo theory. We also show that the efficient uniform sampling assumption holds in several application settings that are of importance in machine learning.

Year: 2009
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.