Skip to main content
Article thumbnail
Location of Repository

Integral Eisenstein cocycles on GLn, II: Shintani’s method

By Pierre Charollois, Samit Dasgupta and Matthew Greenberg

Abstract

We define a cocycle on GLn(Q) using Shintani’s method. This construction is closely related to earlier work of Solomon and Hill, but differs in that the cocycle property is achieved through the introduction of an auxiliary perturbation vector Q. As a corollary of our result we obtain a new proof of a theorem of Diaz y Diaz and Friedman on signed fundamental domains, and give a cohomological reformulation of Shintani’s proof of the Klingen–Siegel rationality theorem on partial zeta functions of totally real fields. Next we relate the Shintani cocycle to the Sczech cocycle by showing that the two differ by the sum of an explicit coboundary and a simple “polar ” cocycle. This generalizes a result of Sczech and Solomon in the case n = 2. Finally, we introduce an integral version of our cocycle by smoothing at an auxiliary prime ℓ. Applying the formalism of the first paper in this series, we prove that certain specializations of the smoothed class yield the p-adic L-functions of totally real fields. Combining our cohomological construction with a theorem of Spiess, we show that th

Topics: Contents
Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.9228
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://people.ucsc.edu/~sdasgu... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.