Skip to main content
Article thumbnail
Location of Repository

Advances in Discriminative Dependency Parsing

By Terry Koo

Abstract

Achieving a greater understanding of natural language syntax and parsing is a critical step in producing useful natural language processing systems. In this thesis, we focus on the formalism of dependency grammar as it allows one to model important head-modifier relationships with a minimum of extraneous structure. Recent research in dependency parsing has highlighted the discriminative structured prediction framework (McDonald et al., 2005a; Carreras, 2007; Suzuki et al., 2009), which is characterized by two advantages: first, the availability of powerful discriminative learning algorithms like log-linear and max-margin models (Lafferty et al., 2001; Taskar et al., 2003), and second, the ability to use arbitrarily-defined feature representations. This thesis explores three advances in the field of discriminative dependency parsing. First, we show that the classic Matrix-Tree Theorem (Kirchhoff, 1847; Tutte, 1984) can be applied to the problem of non-projective dependency parsing, enabling both log-linear and max-margin parameter estimation in this setting. Second, we present novel third-order dependency parsing algorithms that extend the amount o

Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.9143
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://people.csail.mit.edu/ma... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.