Skip to main content
Article thumbnail
Location of Repository


By Moshe Looks B. Sc, Saint Louis and Missouri Washington University


The hierarchical Bayesian Optimization Algorithm (hBOA) [24, 25] learns bitstrings by constructing explicit centralized models of a population and using them to generate new instances. This thesis is concerned with extending hBOA to learning open-ended program trees. The new system, BOA programming (BOAP), improves on previous probabilistic model building GP systems (PMBGPs) in terms of the expressiveness and open-ended flexibility of the models learned, and hence control over the distribution of individuals generated. BOAP is studied empirically on a toy problem (learning linear functions) in various configurations, and further experimental results are presented for two real-world problems: prediction of sunspot time series, and human gene function inference. Content

Topics: vi
Year: 2005
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.