Skip to main content
Article thumbnail
Location of Repository


By Pascal Frossard and Regularization Chambolle Algorithm


This paper addresses the problem of the interpolation of 2-d spherical signals from non-uniformly sampled and noisy data. We propose a graph-based regularization algorithm to improve the signal reconstructed by local interpolation methods such as nearest neighbour or kernel-based interpolation algorithms. We represent the signal as a function on a graph where weights are adapted to the particular geometry of the sphere. We then solve a total variation (TV) minimization problem with a modified version of Chambolle’s algorithm. Experimental results with noisy and uncomplete datasets show that the regularization algorithm is able to improve the result of local interpolation schemes in terms of reconstruction quality

Topics: Index Terms — Spherical Function, Signal Reconstruction
Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.