Location of Repository

The theory of coadjoint orbits of Lie groups is central to a number of areas in mathematics. A list of such areas would include (1) group representation theory, (2) symmetry-related Hamiltonian mechanics and attendant physical theories, (3) symplectic geometry, (4) moment maps, and (5) geometric quantization. From many points of view the most interesting cases arise when the group G in question is semisimple. For semisimple G the most familiar of the orbits are orbits of semisimple elements. In that case the associated representation theory is pretty much understood (the Borel-Weil-Bott Theorem and noncompact analogs, e.g., Zuckerman functors). The isotropy subgroups are reductive and the orbits are in one form or another related to flag manifolds and their natural generalizations. A totally different experience is encountered with nilpotent orbits of semisimple groups. Here the associated representation theory (unipotent representations) is poorly understood and there is a loss of reductivity of isotropy subgroups. To make matters worse (or really more interesting) orbits are no longe

Year: 1994

OAI identifier:
oai:CiteSeerX.psu:10.1.1.352.4088

Provided by:
CiteSeerX

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.