Skip to main content
Article thumbnail
Location of Repository

Local Vs Global Energy Minimization Methods: Application to Stereo Matching

By Cyril Cassisa

Abstract

Abstract-Energy minimization is often the key point of solving problems in computer vision. For decades, many methods have been proposed (deterministic, stochastic,...). Some can only reach local minimum and others strong local minimum close to the optimal solution (global minimum). Since beginning of 21 th century, minimization based on Graph theory have been generalized to find global minimum of multi-labeling problems. In this work, we study deterministic local minimization methods (Iterative Conditional Modes and Direct Descent Energy), and a stochastic global minimization with an improved Simulated Annealing algorithm. A new approach formulation to help local minimization to converge to a minimum closed to the global one is proposed. This method combines local and global energy constraints in an multiresolution way. We focus on stereo matching application. The improved Simulated Annealing proved to reach global minimum as good as Graph based minimization methods. Promising results of proposed local minimization methods are obtained on Middlebury methods. Stereo database compare to globa

Topics: Energy Minimization Methods, Local-Global Minimum, Stereo Matching
Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.1600
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://cyril.cassisa.net/downl... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.