Skip to main content
Article thumbnail
Location of Repository

doi:10.1155/2011/378965 Research Article Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

By X. Joann You, Ping Gu, Jinmei Wang, Tianran Song, Jing Yang, Chee Gee Liew and Henry Klassen


which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs) modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs). Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF) together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.