Skip to main content
Article thumbnail
Location of Repository

Solving transition independent decentralized Markov decision processes

By Raphen Becker, Shlomo Zilberstein, Victor Lesser and Claudia V. Goldman


Formal treatment of collaborative multi-agent systems has been lagging behind the rapid progress in sequential decision making by individual agents. Recent work in the area of decentralized Markov Decision Processes (MDPs) has contributed to closing this gap, but the computational complexity of these models remains a serious obstacle. To overcome this complexity barrier, we identify a specific class of decentralized MDPs in which the agents ’ transitions are independent. The class consists of independent collaborating agents that are tied together through a structured global reward function that depends on all of their histories of states and actions. We present a novel algorithm for solving this class of problems and examine its properties, both as an optimal algorithm and as an anytime algorithm. To the best of our knowledge, this is the first algorithm to optimally solve a non-trivial subclass of decentralized MDPs. It lays the foundation for further work in this area on both exact and approximate algorithms. 1

Year: 2004
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.