Skip to main content
Article thumbnail
Location of Repository

Sparseness achievement in hidden Markov models

By Manuele Bicego, Marco Cristani and Vittorio Murino


In this paper, a novel learning algorithm for Hidden Markov Models (HMMs) has been devised. The key issue is the achievement of a sparse model, i.e., a model in which all irrelevant parameters are set exactly to zero. Alternatively to standard Maximum Likelihood Estimation (Baum Welch training), in the proposed approach the parameters estimation problem is cast into a Bayesian framework, with the introduction of a negative Dirichlet prior, which strongly encourages sparseness of the model. A modified Expectation Maximization algorithm has been devised, able to determine a MAP (Maximum A Posteriori probability) estimate of HMM parameters in this Bayesian formulation. Theoretical considerations and experimental comparative evaluations on a 2D shape classification task contribute to validate the proposed technique. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.