Skip to main content
Article thumbnail
Location of Repository

CONVERGENCE AND CONVERGENCE RATE OF STOCHASTIC GRADIENT SEARCH IN THE CASE OF MULTIPLE AND NON-ISOLATED EXTREMA

By Vladislav B. Tadić

Abstract

The asymptotic behavior of stochastic gradient algorithms is studied. Relying on some results of differential geometry (Lojasiewicz gradient inequality), the almost sure pointconvergence is demonstrated and relatively tight almost sure bounds on the convergence rate are derived. In sharp contrast to all existing result of this kind, the asymptotic results obtained here do not require the objective function (associated with the stochastic gradient search) to have an isolated minimum at which the Hessian of the objective function is strictly positive definite. Using the obtained results, the asymptotic behavior of recursive prediction error identification methods is analyzed. The convergence and convergence rate of supervised learning algorithms are also studied relying on these results

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.313.8862
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0907.1020... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.