Skip to main content
Article thumbnail
Location of Repository

Preprint typeset using LATEX style emulateapj v. 10/09/06 THE DYNAMICAL STRUCTURE OF DARK MATTER HALOS WITH UNIVERSAL PROPERTIES

By Emmanuel Van Hese, Maarten Baes and Herwig Dejonghe

Abstract

N-body simulations have unveiled several apparently universal properties of dark matter halos, including a cusped density profile, a power-law pseudo phase-space density ρ/σ 3 r, and a linear β −γ relation between the density slope and the velocity anisotropy. We present a family of self-consistent phase-space distribution functions F(E,L), based on the Dehnen-McLaughlin Jeans models, that incorporate these universal properties very accurately. These distribution functions, derived using a quadratic programming technique, are analytical, positive and smooth over the entire phase space and are able to generate four-parameter velocity anisotropy profiles β(r) with arbitrary asymptotic values β0 and β∞. We discuss the orbital structure of six radially anisotropic systems in detail and argue that, apart from its use for generating initial conditions for N-body studies, our dynamical modeling provides a valuable complementary approach to understand the processes involved in the formation of dark matter halos

Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.311.9316
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0809.0901... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.