Location of Repository

mutual information based hierarchical clustering

By Er Kraskov and Peter Grassberger

Abstract

Abstract Clustering is a concept used in a huge variety of applications. We review a conceptually very simple algorithm for hierarchical clustering called in the following the mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X,Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use MIC both in the Shannon (probabilistic) version of information theory, where the “objects ” are probability distributions represented by random samples, and in the Kolmogorov (algorithmic) version, where the “objects ” are symbol sequences. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and we reconstruct the fetal ECG from the output of independent components analysis (ICA) applied to the ECG of a pregnant woman.

Publisher: Springer
Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.311.4890
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0809.1605... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.