Skip to main content
Article thumbnail
Location of Repository

A RECURSIVE BIPARTITIONING ALGORITHM FOR PERMUTING SPARSE SQUARE MATRICES INTO BLOCK DIAGONAL FORM WITH OVERLAP

By Seher Acer, Enver Kayaaslan and Cevdet Aykanat

Abstract

We investigate the problem of symmetrically permuting a square sparse matrix into a block diagonal form with overlap. This permutation problem arises in the parallelization of an explicit formulation of the multiplicative Schwarz preconditioner and a more recent block overlapping banded linear solver as well as its application to general sparse linear systems. In order to formulate this permutation problem as a graph theoretical problem, we define a constrained version of the multiway graph partitioning by vertex separator (GPVS) problem, which is referred to as the ordered GPVS (oGPVS) problem. However, existing graph partitioning tools are unable to solve the oGPVS problem. So, we also show how the recursive bipartitioning framework can be utilized for solving the oGPVS problem. For this purpose, we propose a left-to-right bipartitioning approach together with a novel vertex fixation scheme so that existing 2-way GPVS tools that support fixed vertices can be effectively and efficiently utilized in the recursive bipartitioning framework. Experimental results on a wide range of matrices confirm the validity of the proposed approach. Key words. sparse square matrices, block diagonal form with overlap, graph partitioning by vertex separator, recursive bipartitioning, partitioning with fixed vertices, combinatorial scientific computin

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.310.7400
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.bilkent.edu.tr/~... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.