Location of Repository

Dirichlet series for finite combinatorial rank dynamics

By G. Everest, R. Miles, S. Stevens and T. Ward

Abstract

Abstract. We introduce a class of group endomorphisms – those of finite combinatorial rank – exhibiting slow orbit growth. An associated Dirichlet series is used to obtain an exact orbit counting formula, and in the connected case this series is shown to to be a rational function of exponential variables. Analytic properties of the Dirichlet series are related to orbit-growth asymptotics: depending on the location of the abscissa of convergence and the degree of the pole there, various orbit-growth asymptotics are found, all of which are polynomially bounded. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.309.2884
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.ams.org/journals/tr... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.