Skip to main content
Article thumbnail
Location of Repository

Geometric Data Structures and Their Selected Applications

By Miloš Šeda

Abstract

Abstract—Finding the shortest path between two positions is a fundamental problem in transportation, routing, and communications applications. In robot motion planning, the robot should pass around the obstacles touching none of them, i.e. the goal is to find a collision-free path from a starting to a target position. This task has many specific formulations depending on the shape of obstacles, allowable directions of movements, knowledge of the scene, etc. Research of path planning has yielded many fundamentally different approaches to its solution, mainly based on various decomposition and roadmap methods. In this paper, we show a possible use of visibility graphs in point-to-point motion planning in the Euclidean plane and an alternative approach using Voronoi diagrams that decreases the probability of collisions with obstacles. The second application area, investigated here, is focused on problems of finding minimal networks connecting a set of given points in the plane using either only straight connections between pairs of points (minimum spanning tree) or allowing the addition of auxiliary points to the set to obtain shorter spanning networks (minimum Steiner tree). Keywords—motion planning, spanning tree, Steiner tree, Delaunay triangulation, Voronoi diagram. I

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.308.3636
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.waset.org/journals/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.