Skip to main content
Article thumbnail
Location of Repository

3D Body Pose Estimation using an Adaptive Person Model for Articulated ICP

By David Droeschel and Sven Behnke


Abstract. The perception of persons is an important capability of today’s robots that work closely together with humans. An operator may use, for example, gestures to refer to an object in the environment. In order to perceive such gestures, the robot has to estimate the body pose of the operator. We focus on the marker-less motion capture of a human body by means of an Iterative Closest Point (ICP) algorithm for articulated structures. An articulated upper body model is aligned with the depth measurements of an RGB-D camera. Due to the variability of the human body, we propose an adaptive body model that is aligned within the sensor data and iteratively adjusted to the person’s body dimensions. Additionally, we preserve consistency with respect to self-collisions. Besides that, we use an inverse data assignment, that is particularly utile for articulated models. Experiments with measurements of a Microsoft Kinect camera show the advantage of the approach compared to the standard articulated ICP algorithm in terms of the root mean squared (RMS) error and the number of iterations the algorithm needs to converge. In addition, we show that our consistency checks enable to recover from situations where the standard algorithm fails

Topics: Human-Robot Interaction, Marker-less motion capture, Articulated ICP
Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.