Location of Repository

Stationary self-organized fractal structures in an open, dissipative electrical system

By Marco Marani, Jayanth R. Banavar, Guido Caldarelli, Amos Maritan and Andrea Rinaldo

Abstract

Abstract. We study the stationary state of a Poisson problem for a system of N perfectly conducting metal balls driven by electric forces to move within a medium of very low electrical conductivity onto which charges are sprayed from outside. When grounded at a confining boundary, the system of metal balls is experimentally known to self-organize into stable fractal aggregates. We simulate the dynamical conditions leading to the formation of such aggregated patterns and analyze the fractal properties. From our results and those obtained for steady-state systems that obey minimum total energy dissipation (and potential energy of the system as a whole), we suggest a possible dynamical rule for the emergence of scale-free structures in nature

Year: 1998
OAI identifier: oai:CiteSeerX.psu:10.1.1.306.1520
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/cond-mat/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.