Skip to main content
Article thumbnail
Location of Repository

Weak ferromagnetism and spiral spin structures in honeycomb Hubbard planes

By M A N Araújo and N M R Peres


Abstract. Within the Hartree Fock- RPA analysis, we derive the spin wave spectrum for the weak ferromagnetic phase of the Hubbard model on the honeycomb lattice. Assuming a uniform magnetization, the polar (optical) and acoustic branches of the spin wave excitations are determined. The bipartite lattice geometry produces a q-dependent phase difference between the spin wave amplitudes on the two sub-lattices. We also find an instability of the uniform weakly magnetized configuration to a weak antiferromagnetic spiraling spin structure, in the lattice plane, with wave vector Q along the Γ − K direction, for electron densities n> 0.6. We discuss the effect of diagonal disorder on both the creation of electron bound states, enhancement of the density of states, and the possible relevance of these effects to disorder induced ferromagnetism, as observed in proton irradiated graphite

Year: 2006
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.