Skip to main content
Article thumbnail
Location of Repository

A Constructive Meta-Level Feature Selection Method based on Method Repositories

By Hidenao Abe and Takahira Yamaguchi

Abstract

Abstract — Feature selection is one of key issues related with data pre-processing of classification task in a data mining process. Although many efforts have been done to improve typical feature selection algorithms (FSAs), such as filter methods and wrapper methods, it is hard for just one FSA to manage its performances to various datasets. To above problems, we propose another way to support feature selection procedure, constructing proper FSAs to each given dataset. Here is discussed constructive metalevel feature selection that re-constructs proper FSAs with a method repository every given datasets, de-composing representative FSAs into methods. After implementing the constructive meta-level feature selection system, we show how constructive meta-level feature selection goes well with 34 UCI common data sets, comparing with typical FSAs on their accuracies. As the result, our system shows the high performance on accuracies with lower computational costs to construct a proper FSA to each given data set automatically

Topics: Index Terms — Data Mining, Feature Selection, Constructive Meta-Processing
Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.299.3351
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://ojs.academypublisher.co... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.