Skip to main content
Article thumbnail
Location of Repository

Local loss optimization in operator models: A new insight into spectral learning

By Borja Balle, Ariadna Quattoni and Xavier Carreras


This paper re-visits the spectral method for learning latent variable models defined in terms of observable operators. We give a new perspective on the method, showing that operators can be recovered by minimizing a loss defined on a finite subset of the domain. This leads to a derivation of a non-convex optimization similar to the spectral method. We also propose a regularized convex relaxation of this optimization. In practice our experiments show that a continuous regularization parameter (in contrast with the discrete number of states in the original method) allows a better trade-off between accuracy and model complexity. We also prove that in general, a randomized strategy for choosing the local loss succeeds with high probability. 1

Year: 2012
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.