Skip to main content
Article thumbnail
Location of Repository

FSIM: A Feature Similarity Index for Image Quality Assessment

By Lin Zhang, Lei Zhang, Xuanqin Mou and David Zhang

Abstract

Image quality assessment (IQA) aims to use computational models to measure the image quality consistently with subjective evaluations. The well-known structural-similarity (SSIM) index brings IQA from pixel-based stage to structure-based stage. In this paper, a novel feature-similarity (FSIM) index for full reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly according to its low-level features. Specifically, the phase congruency (PC), which is a dimensionless measure of the significance of a local structure, is used as the primary feature in FSIM. Considering that PC is contrast invariant while the contrast information does affect HVS’ perception of image quality, the image gradient magnitude (GM) is employed as the secondary feature in FSIM. PC and GM play complementary roles in characterizing the image local quality. After obtaining the local quality map, we use PC again as a weighting function to derive a single quality score. Extensive experiments performed on six benchmark IQA databases demonstrate that FSIM can achieve much higher consistency with the subjective evaluations than state-of-the-art IQA metrics

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.297.8459
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www4.comp.polyu.edu.hk/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.