Skip to main content
Article thumbnail
Location of Repository

Explicit constructions of RIP matrices and related problems

By Jean Bourgain, Stephen Dilworth, Kevin Ford, Sergei Konyagin and Denka Kutzarova


We give a new explicit construction of n×N matrices satisfying the Restricted Isometry Property (RIP). Namely, for some ε>0,largeN, and any n satisfying N 1−ε ≤ n ≤ N, we construct RIP matrices of order k ≥ n 1/2+ε and constant δ = n −ε. This overcomes the natural barrier k = O(n 1/2) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredients in our proof are new estimates for sumsets in product sets and for exponential sums with the products of sets possessing special additive structure. We also give a construction of sets of n complex numbers whose kth moments are uniformly small for 1 ≤ k ≤ N (Turán’s power sum problem), which improves upon known explicit constructions when (log N) 1+o(1) ≤ n ≤ (log N) 4+o(1). This latter construction produces elementary explicit examples of n×N matrices that satisfy the RIP and whose columns constitute a new spherical code; for those problems the parameters closely match those of existing constructions in the range (log N) 1+o(1) ≤ n ≤ (log N) 5/2+o(1)

Topics: Contents
Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.