Skip to main content
Article thumbnail
Location of Repository

A Chebyshev-loke semiiteration for inconsistent linear systems

By Martin Hanke and Marlis Hochbruck

Abstract

Semiiterative methods are known as a powerful tool for the iterative solution of nonsingular linear systems of equations. For singular but consistent linear systems with coefficient matrix of index one, one can still apply the methods designed for the nonsingular case. However, if the system is inconsistent, the approximations usually fail to converge. Nevertheless, it is still possible to modify classical methods like the Chebyshev semiiterative method in order to fulfill the additional convergence requirements caused by the inconsistency. These modifications may suffer from instabilities since they are based on the computation of the diverging Chebyshev iterates. In this paper we develop an alternative algorithm which allows to construct more stable approximations. This algorithm can be efficiently implemented with short recurrences. There are several reasons indicating that the new algorithm is the most natural generalization of the Chebyshev semiiteration to inconsistent linear system..

Topics: Key words. Semiiterative methods, singular systems, Zolotarev problem, orthogonal polynomials
Year: 1993
OAI identifier: oai:CiteSeerX.psu:10.1.1.29.9781
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • ftp://ftp.maths.tcd.ie/pub/EMI... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.