Article thumbnail

Sampling Algebraic Varieties for Sum of Squares Programs

By Diego Fernando Cifuentes and Pablo A. Parrilo

Abstract

We study sum of squares (SOS) relaxations to optimize polynomial functions over a set V ∩ Rn, where V is a complex algebraic variety. We propose a new methodology that, rather than relying on some algebraic description, represents V with a generic set of complex samples. This approach depends only on the geometry of V, avoiding representation issues such as multiplicity and choice of generators. It also takes advantage of the coordinate ring structure to reduce the size of the corresponding semidefinite program (SDP). In addition, the input can be given as a straight-line program. Our methods are particularly appealing for varieties that are easy to sample from but for which the defining equations are complicated, such as SO(n), Grassmannians, or rank k tensors. For arbitrary varieties, we can obtain the required samples by using the tools of numerical algebraic geometry. In this way we connect the areas of SOS optimization and numerical algebraic geometry

Publisher: 'Society for Industrial & Applied Mathematics (SIAM)'
Year: 2019
DOI identifier: 10.1137/15M1052548
OAI identifier: oai:dspace.mit.edu:1721.1/121576
Provided by: DSpace@MIT
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hdl.handle.net/1721.1/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.